
May 2006 www.stsc.hill.af.mil 25

In a May 2005 CrossTalk article [1],
I discussed six agile software develop-

ment myths and four recommended
extensions to apply agile on large distrib-
uted projects. Over the past year, I have
had the opportunity to work with multi-
ple clients applying agile – or a modified
form of agile – on large U.S. defense con-
tracts. In this article, I share what was
learned through nine scenarios developed
from actual project experiences, along
with 22 related lessons learned.

As background for those unfamiliar
with agile methods, and to set the context
for the scenarios, the agile manifesto [2]
provides the following four value state-
ments agreed to by the founders of the
most popular agile methods:
• We value individuals and interactions

over processes and tools.
• We value working software over doc-

umentation.
• We value customer collaboration over

contract negotiation.
• We value responding to change over

following a plan.

Scenario 1
Agile Planning
An appealing characteristic of agile soft-
ware development is its potential to help
manage change. A client said to me, “We
have good requirements for what we
know today, but technology changes fast.
I need my contractor to be ready to
change direction.” My client’s contractor
had won the job based on his proposed
agile approach. I was asked by my client
to assess that approach.

The contractor was planning incre-
mental deliveries of the refined and allo-
cated requirements along with functional
capabilities. I became concerned with the
approach based on responses I was get-

ting to one particular question: “What if
at the start of the third increment, your
customer gives you new priorities and
wants to change direction?” The most
common response was, “There is no
room in our schedule to change direction.
We already have too much to do.” I then
asked, “What if some things were taken
off your current list?” The response was
not positive, so I asked my client a simi-
lar question. He replied, “I never take
anything off the list.”

Analysis
The first concern is the statement that
there is “no room in our schedule to
change direction.” Adjusting the plan con-
tinually is a fundamental characteristic of
agile methods. In Scenario 1, work was par-
titioned into scheduled blocks called incre-
ments, but there was no real plan to adjust
the effort, degree of detail, or planned
tasks during each increment’s detailed plan-
ning based on new priorities or risks.

The second concern was the statement
“I never take anything off the list.”
Collaboration means cooperation, but it
also implies a willingness to honestly con-
sider alternatives. The customer, although
he wants his contractor to be ready for
change, does not appear to be planning to
collaborate.

Agile Planning Insight
There should always be things you can
take off the list, but this does not mean
customers on agile projects must live
without all their requirements. I will
explain this further later in the article.

Scenario 2
Agile Requirements
I was called in to help a large agile project
that was in trouble. The program manag-

er wanted his team to be agile; to help, he
initiated a few rules. His first rule for his
systems engineers was, “Don’t write more
than 100 requirements.”

When I talked to a developer on the
project, he said, “We wanted more details.
There was too much ambiguity in the
requirements.” Another said, “There was
a lack of flow-down of requirements
from systems engineering.”

When I shared the developer’s com-
ments with a systems engineer, he said,
“We were told to pull back.” Then he
added, “I don’t get it. How are you sup-
posed to handle firm requirements on an
agile project? If we don’t write detailed
requirements with agile, what are systems
engineers expected to do?”

Lessons Learned
The first lessons learned address these
statements: Don’t write more than 100
requirements, and how are you supposed
to handle firm requirements on an agile
project?

Lesson 1: Write down all your must-
do/firm requirements as soon as you
know them, and do not plan to collabo-
rate on them. For those who claim this
recommendation is not agile, I say, this is
practical agility and the following is why:
Trying to collaborate on truly firm require-
ments will only frustrate your team and
waste resources. I have witnessed this
frustration on multiple occasions during
this past year.

When I use the term collaborate, I
mean an honest consideration of alterna-
tives and a willingness to give. I am not
saying do not talk to your customer about
the requirements, but I am saying if there
is no room to give, then do not pretend
there is. Collaboration – in the agile con-

Lessons Learned Using Agile Methods on
Large Defense Contracts

While the agile movement began on small commercial projects, many contractors are
employing these methods today (to varying degrees) on large defense contracts. In the
process, new challenges are being faced that are not addressed by current published agile
literature. Examples of questions being asked include: How do we treat firm require-
ments? How do we report earned value? How are systems engineering, configuration
management, and our test group affected? How should we handle traditional customer
deliverables? What can we do about personnel who are not motivated to work on self-
directed teams? This article employs scenarios based on actual project situations occur-
ring in 2005 to share the latest lessons learned on what is working and what isn’t work-
ing when applying agile software development on large government defense projects.

Monday, 1 May 2006
Track 2: 3:55 – 4:40 p.m.

Ballroom B

Paul E. McMahon
PEM Systems

26 CROSSTALK The Journal of Defense Software Engineering May 2006

text – means more than talking – it
implies taking action that leads to change.

Some have suggested that the term
negotiation might be more appropriate in
this context, but negotiation brings with
it an us and them implication. Alistair
Cockburn tells us that “In properly
formed agile development, there is no
‘us’ and ‘them,’ there is only ‘us’ [2].”

However, one cautionary note: Are
you sure you recognize a must-do
requirement when you see one? As an
example, one of my clients is moderniz-
ing a legacy system. There are lots of
firm requirements. The functionality of
the legacy system must be maintained,
but the users do not need to achieve that
functionality the same way. This has been
a great point of confusion and con-
tention on the project.

Lesson 2: We often confuse nice-to-have
requirements with firm must-do require-
ments. Yes, this sounds like basic systems
engineering, and I know some of you
may be thinking this is not an agile issue.
But it is, and lesson No. 3 is why.

Lesson 3: Systems engineering is still
required with agile development. I find
that in the name of agile, many large
projects are forgetting fundamental sys-
tems engineering.

Lesson 4: We must get out of the
sequential waterfall mentality – this is
an outdated way of thinking and it does
not work with agile methods.

Lesson 5: Agile does not require fewer
written requirements. It does require
collaboration to identify the needed
detail to implement what the team is
focusing on now in this increment. The
word flow-down implies an ordering –
something occurring before something
else. Systems engineering does its job
before software developers do theirs.
Systems engineering does the require-
ments. The developers wait for the hand-
off. This way of thinking will not work
with agile methods.

Systems engineering pullback is exactly
the reverse of what should be happening.
On large projects in particular, there are
still some very important sequential activ-
ities that must happen. For example, sys-
tems engineering must do a high-level first
pass of requirements and allocate them to
major incremental releases before the devel-
opers get going. This is by no means the
end of systems engineering. Today, this
point is too often being missed. The criti-
cal and most intense part of systems engi-

neering with agile is still ahead after the
high-level requirements. This is the collab-
oration on the details that must happen
concurrently, working closely with the devel-
opers in each increment.

The No. 4 and 5 lessons learned
address the following statements:
• There is a lack of flow-down of

requirements.
• We were told to pull back.
• What are systems engineers expected

to do?

Scenario 3
Customer Collaboration and the
Program Manager
A systems engineer on a large agile project
told me that he had been told to keep quiet
at a review concerning a specific technical
topic. He said the program manager had
told him, “We want to be collaborative.”

I was concerned when I heard this com-
ment that someone had misunderstood col-
laboration, so I raised the issue with anoth-
er team member. He explained to me that
the technical topic had been thoroughly dis-
cussed and resolved at a previous meeting.
The program manager apparently did not
want to waste time revisiting it. This made
sense to me, but do not dismiss this sce-
nario lightly. Effective implementation of
collaboration on agile projects is closely
linked to requirements lists, task lists, and
collaboration rules. This is explained further
in the following paragraphs.

Lessons Learned
Lesson 6: The program manager should
not assume the agile team knows how to
collaborate. Many will need to be taught

how to recognize good collaboration
opportunities, and when it is time to stop
collaborating. In Scenario 3, the program
manager knew the technical topic had
been previously discussed and resolved.
He also knew that you can collaborate too
much, which led to his decision.

If you are the program manager on an
agile project, expect more conflict early.
This is because of the shorter iterations and
risk focus. Because of this early increased
conflict, it is critical to have a strong conflict
management process in place and personnel
trained in using that process [3]. I have
observed in the past year both too much
and too little collaboration.

One reason people fail to collaborate is
because it can be draining. Collaboration
takes time and energy. This is one reason
why it is important to distinguish truly firm
requirements from nice-to-have requirements.
This helps us pick our battles wisely.

Recognize opportunities for effective
collaboration. As an example, when a
developer says, “We wanted more
details,” as we saw in Scenario 2, this is a
likely opportunity for collaboration. He is
saying we need more discussion and
action (e.g., updates to task lists) because
the current requirements/task list is
ambiguous, or is missing tasks.

Lesson 7: The program manager’s role on
an agile project is affected by how he/she
interacts with the agile team, particularly
with respect to requirements and task
lists. Some program managers have asked,
“Does agile affect my job?” If you are the
program manager, I recommend that you
encourage your team to resolve ambiguous
requirements and add missing tasks to the
appropriate list. This will ultimately provide
more accurate visibility of the real status
back to you.

Program managers should also let their
team know they expect to hear about more
issues early and that they will not shoot the
messenger. This may sound trite, but the man-
ner in which a program manager responds
to issues raised early can set the tone for the
entire project with respect to timely and
accurate reporting up the chain. This is par-
ticularly important on agile projects due to
the increased tendency to push work out as
we will see later in Scenario 5.

Lesson 8: On large projects it is necessary
to have multiple lists. The organization of
most large agile projects includes many
hub-teams that interact differently from
teams in traditional hierarchical organiza-
tions. We refer to the teams as hub-teams
rather than sub-teams because of the man-
ner in which the teams interact [1, 4].

“If you are the program
manager on an agile
project, expect more

conflict early ... Because
of this early increased
conflict, it is critical to
have a strong conflict

management process in
place and personnel
trained in using that

process.”

Transforming: Business, Security,Warfighting

Lessons Learned Using Agile Methods on Large Defense Contracts

May 2006 www.stsc.hill.af.mil 27

Large projects tend to have more
complex products and sub-products. This
implies multiple lists. The top list includes
the end-customer requirements (e.g.,
product backlog list for full project/prod-
uct). Lower lists are more solution (e.g.,
design) and task oriented and are used by
individual hub-teams to remove ambigui-
ty of higher-level requirements and clari-
fy task responsibility.

Lesson 9: When you understand how
the full family of lists works together on
a large agile project, you will understand
why there is always something you can
take off the list. We remove ambiguity by
collaborating and adding solution space
items to lower lists (e.g., hub-team lists
for specific increments/iterations). By
solution space items, I mean tasks associ-
ated with design decisions (e.g., the look
and feel of a user interface), and other
real work that team members must do
(e.g., preparation for a customer review
and documentation). Because the solu-
tion space provides choice, it also pro-
vides opportunity to collaborate – to
consider and be open to alternatives. This
is a full team responsibility and must
include systems and software engineering
and customer representatives.

You can think of the lower lists as the
result of successful collaboration as long as
those lists represent the real work being
done by the project teams. Watch for
warning signs of failed collaboration such as
work that is happening, but is not on any
list and has not been agreed to.

Scenario 4
Customer Collaboration and User
Conferences
One of my agile project clients has a very
large customer community. To gain early
feedback, user conferences were held to
demonstrate incremental versions of the
product. Developers were sent to the con-
ferences to interact directly with the users.

One team member who attended a
user conference commented, “We
thought the direct interaction between
the customers and our developers would
lead to fewer requirements, but the users
wanted more.” Another said, “Many
users wanted different things. Our devel-
opers did not know who to listen to.”
Another said, “Some users became upset
because they did not see all their require-
ments in the demonstrated product.”

Lessons Learned
I used to say, “You can involve the cus-
tomer too early even on an agile project.”
But this does not communicate the situa-

tion accurately. I now say, “You can never
bring the customer in too soon as long as
you know who your customer is.”

Ken Schwaber, co-developer of the
Scrum process (a popular agile method),
uses the term product owner rather than cus-
tomer. The product owner is responsible
for representing the stakeholders [5]. The
product owner manages the team list. In
Scrum, the team list is referred to as the
Product and Sprint Backlogs. The product
owner is responsible to keep the list in
priority order, and provides clarifications
to the team when needed.

Lesson 10: Each hub-team must have its
own single product owner and its own sin-
gle list for the work that is approved to be
working on now. In Scenario 4, the devel-
opers did not know who their product
owner was. User conferences are encour-
aged to allow developers to hear the needs

of end users directly. However, approval for
work by individual hub-teams must be
coordinated through a single product
owner. Similarly, once work is approved for
a hub-team, its priority must be clear and in
which increment it is approved to be
worked on. There should be a single list for
each hub-team for the current approved
work. Large projects will have many hub-
teams (e.g., a project with 500 people could
have 50 hub-teams). This implies 50 prod-
uct (or sub-product) owners (one for each
team). This does not mean each product
owner must be dedicated full-time to the
product owner role.

I have heard some say that agile will
not scale up because there are not enough
customer personnel. The implication is that
customer must be the end-customer. But
often on large agile projects, the right

customer is not the end-customer, but
rather someone who represents the end
customer.

Lesson 11: The right systems engineer
may be the perfect candidate for a prod-
uct owner role. This lesson addresses the
question, “What are systems engineers
expected to do?” Thinking of a systems
engineer as a product owner should not
seem like a foreign idea. In many large
organizations, systems engineering is
viewed as the customer for software engi-
neering.

Schwaber, in describing the relation-
ship of the team and the product owner,
refers to “constantly collaborating, schem-
ing together about how to get the most
value for the business” [5]. This is the
model of how systems engineering, soft-
ware engineering, and support organiza-
tions in large companies should be operat-
ing for effective agile operations – schem-
ing together (in a positive way) with a
common goal of value for the business.
Unfortunately today, many large organiza-
tions do not operate under this model, but
rather with a throw-it-over-the-wall/not-my-
problem sequential/waterfall mind-set.

Scenario 5
Risks and Priorities
On one project, a hub-team lead engineer
said he learned for the first time, in a
recent formal program review with the
customer, that some work his hub-team
was dependent upon was being shifted
out to a later increment by another hub-
team on the project. That other hub-team
had decided they had higher priority and
higher risk tasks to work on. No one
from that hub-team had coordinated the
change with the dependent hub-team,
nor did the lead of that team realize the
impact of his team’s decision.

Lessons Learned
Lesson 12: Hub-teams on larger projects
must not decide to move functionality
out without collaborating with their
product owner. In Scenario 5, the hub-
team made a decision to reprioritize their
work without coordinating this change
with a dependent team. The product
owner must approve any changes to hub-
team plans.

Lesson 13: Product owners on large
agile projects must meet regularly to
coordinate hub-team changes with
interfacing product owners. On large
projects, the product owner has a larger
set of responsibilities than on small agile
projects. The product owner must coor-

“Thinking of a systems
engineer as a product
owner should not seem

like a foreign idea.
In many large

organizations, systems
engineering is viewed

as the customer
for software

engineering.”

Transforming: Business, Security,Warfighting

28 CROSSTALK The Journal of Defense Software Engineering May 2006

dinate any decisions to change priorities
of planned work with all dependent
product owners. Individual teams may
not be aware of the full project impact
of a change to their plans. The coordina-
tion process described in this lesson is
missing today on many large projects
attempting to be agile. Refer to Figure 1
for a diagram of a large agile project
team’s roles, lists, and interactions.

Lesson 14: A project integration plan is
a critical artifact that needs to be
employed by product owners on large
agile projects. I asked a developer on a
large agile project where I could find the
project integration plan. He replied, “We
do use cases. We do not need an integra-
tion plan.”

Integration occurs earlier and more
frequently on an agile project. Part of
the expanded responsibilities of the
product owner on large agile projects
includes coordination and approval of
changes to the work at the hub-team
level that may have an impact on inter-
facing teams. A project integration plan
becomes more critical on agile projects
due to the increased integration frequen-
cy. It is a critical artifact that should be
employed by hub-team product owners
when discussing potential changes to
planned work.

One reason the integration plan is so
important on large agile projects is
because one can become lost in the
details of all the individual team lists on a
large project. The integration plan helps
the project leaders see the big picture,
which is essential when considering plan
changes.

Lesson 15: Use cases are not a replace-
ment for the integration planning. Use
cases can help developers understand the
project requirements. An integration plan
conveys the overall project road map,
including the planned sequence of activi-
ties and dependencies. One cannot
replace the other.

Scenario 6
Agile Earned Value
That same hub-team that had shifted
planned work out had also reported that
it had completed 100 percent of its
planned functionality for the same incre-
ment. When questioned about the func-
tionality that was being moved out, the
lead engineer said that his team had made
the decision to move that work out based
on priority and risk, so he decided not to
include it in his measurement reporting
for that increment.

Lessons Learned
Lesson 16: One of the greatest values of
agile is early visibility to management of
accurate status. This visibility is possible
only if progress is reported relative to
the baseline plan. In Scenario 6, the hub-
team lead engineer made the decision not
to include planned work in his measure-
ments. As previously discussed, the hub-
team should not make decisions on mov-
ing work without coordination with the
product owner. But even if work is agreed
to be moved out after the start of an
increment, it is critical that the earned
value report continue to be based on the
original baseline plan. Key to agile is the
reporting of true team velocity. A com-
mon, but costly, mistake on many large

incremental projects is pushing planned
work out and not raising the visibility. If
you push work out, do not hide it. Raise it
up through accurate earned value report-
ing.

Scenario 7
Self-Directed Teams
I was explaining how self-directed teams
operate to a group of senior leaders at
one of my client’s locations where they
were initiating a new agile project. An
experienced senior engineer interrupted
with the statement, “It will never work on
large projects because you will never find
enough people with the necessary self-
direction skills.” My first reaction was
that he might be right. I have since
changed my view.

Lessons Learned
Lesson 17: Seed your hub-teams with
agile-knowledgeable leaders. I used to
buy into the idea that agile methods
required special skills that many average
developers could not master. An exam-
ple is estimating the personal effort
required to complete a task, and report-
ing actual personal progress accurately.
Watching agile take hold in organizations
has led me to change this belief. Now I
believe most team players can pick up
agile skills easily.

When a project has leaders who
understand agile practices, and mentor
others by example, a self-directed culture
can take hold quickly. When new devel-
opers are exposed to an effective self-
directed culture, they learn by watching
peers and then just do it. I have witnessed
this rapid behavior change. It is the lead-
ership and team culture that leads to agile
success, not some special set of individ-
ual skills.

Scenario 8
Agile Customer Deliverables
Scenarios 8 and 9 are admittedly exag-
gerations, but they are included to com-
municate issues commonly faced on
large defense projects trying to become
more agile.

When I use the term customer deliver-
ables, I mean contractually required doc-
umentation, reviews, and products (e.g.,
code).

The program manager on an agile pro-
ject asks one of his developers, “Can you
show me your documentation?” The
developer responds, “We’re agile, so I am
not focusing on my documentation.” The
program manager replies, “I thought you
were writing agile documentation?” The
developer replies, “I am, but you wouldn’t

Program

Manager

Hub Team N Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

C

Customer

Community

Hub Team M Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

Configuration Management

 Representative

Product Owner Team:

Hub Team Product Owners

meet as team to coordinate

plan changes/clarify work

Team M

Task List

Team N

Customer

Requirements

Focus

Refined

Requirements/

Design/Task Focus

Program

Manager

Hub Team N Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

Configuration Management

 Representative

Customer

Community

Hub Team M Key Roles:

Agile Knowledgeable Leader

Product Owner

Systems Engineers

Software Developers

Testers

Product Owner Team:

Hub Team Product Owners

meet as team to coordinate

plan changes/clarify work.

Team M

Task List

Team N

Customer

Requirements

Focus

Refined

Requirements/

Design/Task Focus

Top Level

List

Task List

Figure 1: Large Agile Project Team Roles, Lists, and Interactions

Lessons Learned Using Agile Methods on Large Defense Contracts

May 2006 www.stsc.hill.af.mil 29

want to look at it because it is full of
errors.”

Lessons Learned
Lesson 18: Agile deliverables must be
determined collaboratively with the
customer early. Cockburn tells us that
when it comes to determining what
should be in a document, the answer is
whatever the sponsor and the team
decide [6].

Too often, I see a lack of discussion
on customer deliverables early with the
customer on large agile projects. So we
should not be surprised when a customer
becomes upset when the early deliver-
ables do not meet expectations.

Agile customer deliverables should
not be confused with low quality deliver-
ables. As the exaggerated Scenario 8
points out, when we do not plan our
deliverables through collaboration with
the customer early – and allocate time
and tasks based on all the work required
– the deliverables will suffer and low
quality should not be a surprise.

Lesson 19: The major difference
between agile deliverables and tradi-
tional milestone deliverables is what
takes place before the milestone deliv-
ery. When using a traditional waterfall
model, it is not uncommon for customers
to see deliverables for the first time at a
major project milestone. With agile, the
milestone should become a non-event
because it is the culmination of an on
going, close working relationship
between customer and contractor. But do
not be tempted to delete the milestone
event. It is necessary on large agile projects
to have checkpoints to ensure collabora-
tion is really happening.

Scenario 9
Agile Test and Configuration
Management
A manager on an agile project says,
“With agile, we get more for less so let’s
plan on doing less testing.” Another
manager on the project replies, “Okay,
and let’s keep the testers and configura-
tion management people in a separate
building so they do not slow the agile
team down.”

Lessons Learned
Lesson 20: Agile does not always mean
less. For example, do not plan on less
testing. With agile, we do less of certain
activities because other activities com-
pensate. For example, we may do less for-
mal written detailed requirements partly
because the detailed test cases can com-

pensate [7]. With agile, we test continu-
ously to ensure previous iterations func-
tion properly along with new functionali-
ty. With agile, it is flawed thinking to
believe you can do less testing.

Lesson 21: Testers must be part of the
hub-teams. Agile developers must do
their own low-level testing due to the
tight coupling of the test-code-design
cycle. Distinct testers on large projects
writing higher level tests must work
closely with developers to ensure com-
plete test coverage. In our exaggerated
Scenario 9, the testers were placed in a
different building partly to keep from
slowing the agile team down and partly to
provide a level of test independence. On
large agile projects, you can still have an
independent group run tests, but this
does not mean they should be physically
separated from the team.

Lesson 22: Configuration management
must be integrated into the hub-teams.
Cockburn tells us that the configuration
management system is steadily cited by
teams as their most critical non-compiler
tool [6]. This is partly because of the sys-
tems support for individual check-in,
check-out, and continuous integration.
On large agile projects, I have found
another reason why configuration man-
agement must be integrated into each
hub-team.

Schwaber uses the term shippable [5] in
describing the quality that each iteration’s
product must have. With agile, we must
never demonstrate to the customer a
product that has not been fully tested and
is ready to ship, even if we do not plan on
deploying it today.

The reason is visibility – accurate
reporting. What we demonstrate must be
done. If it is not done, we do not report
it as done, and we do not demonstrate it.
This is an essential practice of agile
methods.

Done means ready to ship, which
means fully tested, documented, and
supportable. If it is not done, do not
pretend it is. Configuration management,
especially on large agile projects, can
provide an important checkpoint to keep
the team from caving in on their defini-
tion of done when external pressures
mount.

Conclusion
Many of the lessons discussed in this
article are not new, and some may
appear to have little – if anything – to
do with agile. Examples include the fol-
lowing: distinguishing must-do require-

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEWTWISTONTECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

30 CROSSTALK The Journal of Defense Software Engineering May 2006

Transforming: Business, Security,Warfighting

ments from nice-to-have; providing more
details for ambiguous requirements;
providing single focal points (product
owners) for work and work change
approval; coordinating schedule changes
across the project; developing and using
an integration plan; reporting earned
value relative to your baseline plan;
determining how collaborating teams
resolve conflict; planning the work and
scheduling the time for customer deliv-
erables; and controlling your baseline
releases through your configuration
management system.

While it may appear that these are not
agile issues, they are very real agile issues.
This is because today – in the name of
agility – we are witnessing a breakdown
of fundamental systems engineering.

Agile is not a short-cut around sys-
tems engineering. It is not about systems
engineers stepping back and letting
developers go. It is about systems engi-
neering stepping forward and working
more effectively with all project stake-
holders. It is about implementing more
effective ways to manage our work lists
and communicating the results more
effectively.

Ultimately, agile is about value
achieved through managed change. In

particular, make small changes early and
often so we do not get surprised by the
big ones later.u

References
1. McMahon, Paul. E. “Extending Agile

Methods: A Distributed Project and
Organizational Improvement Per-
spective.” CrossTalk May 2005
<www.stsc.hill.af.mil/crosstalk/2005/
05/0505mcmahon.html>.

2. Cockburn, Alistair. Agile Software
Development. Addison-Wesley, 2002:
215-218.

3. McMahon, Paul. E. Virtual Project
Management: Software Solutions for
Today and the Future. St. Lucie Press,
2001: Chapter 5.

4. Highsmith, Jim. Agile Project
Management. Addison-Wesley, 2004:
239-240.

5. Schwaber, Ken. Agile Project
Management with Scrum. Microsoft
Press, 2004.

6. Cockburn, Alistair. Crystal Clear: A
Human-Powered Methodology for
Small Teams. Addison-Wesley, 2004:
178, 37.

7. Ambler, Scott. Agile Modeling. John
Wiley & Sons, 2002: 217.

About the Author

Paul E. McMahon,
principal of PEM Sys-
tems, helps large and
small organizations as
they move toward in-
creased agility. He has

taught software engineering, conducted
workshops on engineering process and
management, published articles on agile
software development, and is author of
“Virtual Project Management: Software
Solutions for Today and the Future.”
McMahon is a frequent speaker at indus-
try conferences including the Systems
and Software Technology Conference,
and is a certified ScrumMaster. He has
more than 25 years of engineering and
management experience working for
companies including Hughes and
Lockheed Martin.

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

